Increasing Leaf Vein Density by Mutagenesis: Laying the Foundations for C4 Rice
نویسندگان
چکیده
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
منابع مشابه
Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number
Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concent...
متن کاملThe functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice.
One mechanism to enhance global food stocks radically is to introduce C4 photosynthesis into C3 crops from warm climates, notably rice. To accomplish this, an understanding of leaf structure and function is essential. The chlorenchyma structure of rice and related warm-climate C3 grasses is distinct from that of cool temperate C3 grasses. In temperate C3 grasses, vacuoles occupy the majority of...
متن کاملElevated auxin biosynthesis and transport underlie high vein density in C4 leaves.
High vein density, a distinctive trait of C4 leaves, is central to both C3-to-C4 evolution and conversion of C3 to C4-like crops. We tested the hypothesis that high vein density in C4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. Up-regulation of genes in auxin biosynthesis pathways and higher auxin content were found in developing C4 leaves compared with deve...
متن کاملRe-creation of a Key Step in the Evolutionary Switch from C3 to C4 Leaf Anatomy
The C4 photosynthetic pathway accounts for ∼25% of primary productivity on the planet despite being used by only 3% of species. Because C4 plants are higher yielding than C3 plants, efforts are underway to introduce the C4 pathway into the C3 crop rice. This is an ambitious endeavor; however, the C4 pathway evolved from C3 on multiple independent occasions over the last 30 million years, and st...
متن کاملInfluence of leaf vein density and thickness on hydraulic conductance and photosynthesis in rice (Oryza sativa L.) during water stress
The leaf venation architecture is an ideal, highly structured and efficient irrigation system in plant leaves. Leaf vein density (LVD) and vein thickness are the two major properties of this system. Leaf laminae carry out photosynthesis to harvest the maximum biological yield. It is still unknown whether the LVD and/or leaf vein thickness determines the plant hydraulic conductance (Kplant) and ...
متن کامل